profile_cluster_DEG
profile_cluster_DEG.Rd
Differential Expression Between Profile and Background in a Single Cluster
Usage
profile_cluster_DEG(
profile,
cluster,
exprs,
cell_meta,
cell_profile_prob,
cluster_col = "cluster",
pseudotime_col = "cell_t",
permute_n = 50
)
Arguments
- profile
Character or numeric vector indicating which profiles to test.
- cluster
Character or factor. Name or ID of the cluster to analyze.
- exprs
A gene expression matrix (genes × cells).
- cell_meta
A data frame of cell-level metadata (must include pseudotime and cluster labels).
- cell_profile_prob
A numeric matrix of profile probabilities (cells × profiles).
- cluster_col
Name of the column in `cell_meta` for cluster labels (default: `"cluster"`).
- pseudotime_col
Name of the column in `cell_meta` representing pseudotime (default: `"cell_t"`).
- permute_n
Integer. Number of permutations for null model generation (default: 50).
Value
A list containing:
- stat
Data frame with statistics, empirical p-values, and FDR-adjusted p-values
- cell
Character vector of cell IDs used in the test
- design_null, design_full, coef, df
Model components from GAM fitting
Details
Performs pseudotime-aware differential expression testing between a target profile and control background within a specific transcriptional cluster. Combines soft cluster-weighted regression with permutation-derived null distributions to assess gene-level significance.
Examples
# Assuming cell_meta, exprs, and cell_profile_prob are defined
res <- profile_cluster_DEG("P1", cluster = "C2", exprs, cell_meta, cell_profile_prob)
#> Error in as.data.frame(cell_meta): object 'cell_meta' not found
head(res$stat)
#> Error in h(simpleError(msg, call)): error in evaluating the argument 'x' in selecting a method for function 'head': object 'res' not found