Skip to contents

Ridge Regression for Gene Expression Modeling

Usage

ridge_regression(X, G, lambda = 1e-04)

Arguments

X

A numeric matrix of predictors (cells × features).

G

A numeric response matrix or vector. Must match number of rows in `X` (cells × genes or 1).

lambda

Non-negative regularization strength for ridge penalty (default: 1e-4).

Value

A list with components:

coef

Estimated coefficient matrix (features × genes)

rss

Residual sum of squares per gene

Details

Performs ridge regression using a closed-form solution. Can be applied to model either a single gene (vector response) or multiple genes (matrix response) using a shared regularization penalty.

Examples

set.seed(1)
X <- matrix(rnorm(200), nrow = 50)
G <- matrix(rnorm(150), nrow = 50)
fit <- ridge_regression(X, G)
#> Error in ridge_regression(X, G): could not find function "ridge_regression"
str(fit)
#> Error in str(fit): object 'fit' not found